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Abstract

In previous work, we developed a closed-loop speech chain model based
on deep learning, in which the architecture enabled the automatic speech
recognition (ASR) and text-to-speech synthesis (TTS) components to mu-
tually improve their performance. This was accomplished by the two parts
teaching each other using both labeled and unlabeled data. This approach
could significantly improve model performance within a single-speaker
speech dataset, but only a slight increase could be gained in multi-speaker
tasks. Furthermore, the model is still unable to handle unseen speakers.
In this paper, we present a new speech chain mechanism by integrating
a speaker recognition model inside the loop. We also propose extending
the capability of TTS to handle unseen speakers by implementing one-shot
speaker adaptation. This enables TTS to mimic voice characteristics from
one speaker to another with only a one-shot speaker sample, even from
a text without any speaker information. In the speech chain loop mech-
anism, ASR also benefits from the ability to further learn an arbitrary
speakers characteristics from the generated speech waveform, resulting in
a significant improvement in the recognition rate.

Index Terms: speech chain, speech recognition, speech synthesis, deep learn-
ing, semi-supervised learning

1 Introduction

In human communication, a closed-loop speech chain mechanism has a critical
auditory feedback mechanism from the speaker’s mouth to her ear [1]. In other
words, the hearing process is critical not only for the listener but also for the
speaker. By simultaneously listening and speaking, the speaker can monitor the
volume, articulation, and general comprehensibility of her speech. Inspired by
such a mechanism, we previously constructed a machine speech chain [2] based
on deep learning. This architecture enabled ASR and TTS to mutually improve
their performance by teaching each other.
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One of the advantages of using a machine speech chain is the ability to train
a model based on the concatenation of both labeled and unlabeled data. For su-
pervised training with labeled data (speech-text pair data), both ASR and TTS
models can be trained independently by minimizing the loss of their predicted
target sequence and the ground truth sequence. However, for unsupervised
training with unlabeled or unpaired data (speech only or text only), the two
models need to support each other through a connection. Our experimental
results reveal that such a connection enabled ASR and TTS to further improve
their performance by using only unpaired data. Although this technique could
provide a significant improvement in model performance within a single-speaker
speech dataset, only a slight increase could be gained in multi-speaker tasks.

Difficulties arise due to the fundamental differences in the ASR and TTS
mechanisms. The ASR task is to “extract” data from a large amount of in-
formation and only retain the spoken content (many-to-one mapping). On the
other hand, the TTS task aims to “generate” data from compact text informa-
tion into a generated speech waveform with an arbitrary speakers characteristics
and speaking style (one-to-many mapping). The imbalanced amounts of infor-
mation contained inside the text and speech causes information loss inside the
speech-chain and hinders us in perfectly reconstructing the original speech. To
enable the TTS system to mimic the voices of different speakers, we previously
only added speaker information via a speaker’s identity by one-hot encoding.
However, this is not a practical solution because we are still unable to handle
unseen speakers.

In this paper, we propose a new approach to handle voice characteristics
from an unknown speaker and minimize the information loss between speech
and text inside the speech chain loop. First, we integrate a speaker recognition
system into the speech chain loop. Second, we extend the capability of TTS to
handle the unseen speaker using one-shot speaker adaptation. This enables TTS
to mimic voice characteristics from one speaker to another with only a one-shot
speaker sample, even from text without any speaker information. In the speech
chain loop mechanism, ASR also benefits from furthering learning an arbitrary
speakers characteristics from the generated speech waveform. We evaluated our
proposed model with the well-known Wall Street Journal corpus, consisting of
multi-speaker speech utterances that are often used as an ASR benchmark test
set. Our new speech mechanism is able to handle unseen speakers and improve
the performance of both the ASR and TTS models.

2 Machine Speech Chain Framework

Figure. 1 illustrates the new speech chain mechanism. Similar to the earlier
version, it consists of a sequence-to-sequence ASR [3, 4], a sequence-to-sequence
TTS [5], and a loop connection from ASR to TTS and from TTS to ASR. The
key idea is to jointly train the ASR and TTS models. The difference is that
in this new version, we integrate a speaker recognition model inside the loop
illustrated in Fig. 1(a). As mentioned above, we can train our model on the
concatenation of both labeled (paired) and unlabeled (unpaired) data. In the
following, we describe the learning process.

1. Paired speech-text dataset (see Fig. 1(a)) Given the speech utter-
ances x and the corresponding text transcription y from dataset DP , both
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Figure 1: Overview of proposed machine speech chain architecture with speaker
recognition; (b) Unrolled process with only speech utterances and no text tran-
scription (speech → [ASR,SPKREC] → [text + speaker vector] → TTS →
speech); (c) Unrolled process with only text but no corresponding speech ut-
terance ([text + speaker vector by sampling SPKREC] → TTS → speech →
ASR → text). Note: grayed box is the original speech chain mechanism.

ASR and TTS models can be trained independently. Here, we can train
ASR by calculating the ASR loss LPASR directly with teacher-forcing. For
TTS training, we generate a speaker embedding vector z = SPKREC(x),
integrate z information with the TTS, and calculate the TTS loss LPTTS
via teacher-forcing.

2. Unpaired speech data only (see Fig. 1(b)) Given only the speech
utterances x from unpaired dataset DU , ASR generates the text transcrip-
tion ŷ (with greedy or beam-search decoding), and SPKREC provides a
speaker-embedding vector z = SPKREC(x). TTS then reconstructs the
speech waveform x̂ = TTS(ŷ, z), and given the generated text ŷ and the
original speaker vector z via teacher forcing. After that, we calculate the
loss LUTTS between x and x̂.

3. Unpaired text data only (see Fig. 1(c)) Given only the text tran-
scription y from unpaired dataset DU , we need to sample speech from
the available dataset x̃ ∼ (DP ∪ DU ) and generate a speaker vector
z̃ = SPKREC(x̃) from SPKREC. Then, the TTS generates the speech
utterance x̂ with greedy decoding, while the ASR reconstructs the text
ŷ = ASR(x̂), given generated speech x̂ via teacher forcing. After that, we
calculate the loss LUASR between y and ŷ.

We combine all loss together and update both ASR and TTS model:

L = α ∗ (LPASR + LPTTS) + β ∗ (LUASR + LUTTS) (1)

θASR = Optim(θASR,∇θASR
L) (2)

θTTS = Optim(θTTS ,∇θTTS
L) (3)

where α, β are hyper-parameters to scale the loss between supervised (paired)
and unsupervised (unpaired) loss.
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3 Sequence-to-Sequence ASR

A sequence-to-sequence [6] architecture is a type of neural network that directly
models the conditional probability P (y|x) between two sequences x and y. For
an ASR model, we assume the source sequence x = [x1, .., xS ] is a sequence
of speech feature (e.g., Mel-spectrogram, MFCC) and the target sequence y =
[y1, .., yT ] is a sequence of grapheme or phoneme.

The encoder reads source speech sequence x, forwards it through several
layers (e.g., LSTM[7]/GRU[8], convolution), and extracts high-level feature rep-
resentation he = [he1, .., h

e
S ] for the decoder. The decoder is an autoregressive

model that produces the current output conditioned on the previous output
and the encoder states he. To bridge the information between decoder states
hdt and encoder states he, we use an attention mechanism [9] to calculate the
alignment probability at(s) = Align(hes, h

d
t ); ∀s ∈ [1..S] and then calculate the

expected context vector ct =
∑S
s=1 at(s) ∗ hes. Finally, the decoder predicts the

target sequence probability pyt = P (yt|ct, hdt ,y<t; θASR). In the training stage,
we optimized the ASR by minimizing the negative log-likelihood loss function:

LASR(y, py) = −
T∑
t=1

C∑
c=1

1(yt = c) ∗ log (pyt [c]) (4)

4 Sequence-to-Sequence TTS with One-shot Speaker
Adaptation

A parametric TTS can be formulated as a sequence-to-sequence model where
the source sequence is a text utterance y = [y1, .., yT ] with length T , and the
target sequence is a speech feature x = [x1, .., xS ] with length S. Our model
objective is to maximize P (x|y; θTTS) w.r.t TTS parameter θTTS . We build our
model upon the basic structure of the “Tacotron” TTS [5] and “DeepSpeaker”
[10] models.

The original Tacotron is a single speaker TTS system based on a sequence-to-
sequence model. Given a text utterance, Tacotron produces the Mel-spectrogram
and the linear spectrogram followed by the Griffin-Lim algorithm to recover the
phase and reconstruct the speech signal. However, the original model is not
designed to incorporate speaker identity or to generate speech from different
speakers.

On the other hand, DeepSpeaker is a deep neural speaker-embedding sys-
tem (here denoted as “SPKREC”). Given a sequence of speech features x =
[x1, .., xS ], DeepSpeaker generates an L2-normalized continuous vector embed-
ding z. If x1 and x2 are spoken by the same speakers, the trained Deep-
Speaker model will produce the vector z1 = SPKREC(x1) and the vector
z2 = SPKREC(x2), which are close to each other. Otherwise, the generated
embeddings z1 and z2 will be far from each other. By combining Tacotron
with DeepSpeaker, we can do “one-shot” speaker adaptation by conditioning
the Tacotron with the generated fixed-size continuous vector z from the Deep-
Speaker with a single speech utterance from any speaker.

Here, we adopt both systems by modifying the original Tacotron TTS model
to integrate the DeepSpeaker model. Figure 2 illustrates our proposed model.
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Figure 2: Proposed model: sequence-to-sequence TTS (Tacotron) + speaker
information via neural speaker embedding (DeepSpeaker).
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From the encoder module, the character embedding maps a sequence of charac-
ters into a continuous vector. The continuous vector is then projected by two
fully connected (FC) layers with the LReLU[11] function. We pass the results
to a CBHG module (1D Convolution Bank + Highway + bidirectional GRU)
with K=8 (1 to 8) different filter sizes. The final output he = [he1, ..h

e
T ] from

the CBHG module represents high-level information from input text y.
On the decoder side, we have an autoregressive decoder that produces cur-

rent output Mel-spectrogram x̂Ms given the previous output xMs−1, the encoder
context vector ct, and the speaker-embedding vector z. First, at the time-
step s-th, the previous input xMs−1 is projected by two FC layers with LReLU.
Then, to inform our decoder which speaker style will be produced, we feed
the corresponding speech utterance and generate speaker-embedding vector
z = SPKREC(xM ). This speaker embedding z is generated by using only 1
utterance of target speakers, thus it is called as “one-shot” speaker adaptation.
After that, we integrate the speaker vector z with a linear projection and sum
it with the last output from the FC layer. Then, we apply two LSTM layers to
generate current decoder state hds . To retrieve the relevant information between
the current decoder state and the entire encoder state, we calculate the attention
probability as(t) = Align(het , h

d
s);∀t ∈ [1..T ] and the expected context vector

cs =
∑T

1 as(t)∗het . Then, we concatenate the decoder state hds , context vector cs,
and projected speaker-embedding z together into a vector, followed by two fully
connected layers to produce the current time-step Mel-spectrogram output xMs .
Finally, all predicted outputs of Mel-spectrogram xM = [xM1 , .., x

M
S ] are pro-

jected into a CBHG module to invert the corresponding Mel-spectrogram into
a linear-spectrogram xR = [xR1 , .., x

R
S ]. Additionally, we have an end-of-speech

prediction module to predict when the speech is finished. The end-of-speech
prediction module reads the predicted Mel-spectrogram x̂Ms and the context
vector cs, followed by an FC layer and sigmoid function to produce a scalar
bs ∈ [0..1].

In the training stage, we optimized our proposed model by minimizing the
following loss function:

LTTS(.) =

(
S∑
s=1

γ1
(
‖xMs − x̂Ms ‖22 + ‖xRs − x̂Rs ‖22

)
−γ2

(
bs log(b̂s) + (1− bs) log(1− b̂s)

))
+ γ3

(
1− 〈ẑ, z〉
‖ẑ‖2 ‖z‖2

)
(5)

where γ1, γ2, γ3 are our sub-loss hyper-parameters, and xM ,xR, b, z are the
ground truth Mel-spectrogram, linear spectrogram, and end-of-speech label and
speaker-embedding vector from real speech data, respectively. x̂M , x̂R, b̂ rep-
resent the predicted Mel-spectrogram, linear spectrogram, and end-of-speech
label, respectively, and speaker-embedding vector ẑ = SPKREC(x̂M ) is the
predicted speaker vector from the Tacotron output. Here, LθTTS

consists of 3
different loss formulations: Eq. 5 line 1 applies L2 norm-squared error between
ground-truth and predicted speech as a regression task, Eq. 5 line 2 applies bi-
nary cross entropy for end-of-speech prediction as a classification task, and Eq. 5
line 3 applies cosine distance between the ground-truth speaker-embedding z and
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predicted speaker-embedding ẑ, which is the common metric for measuring the
similarity between two vectors; furthermore, by minimizing this loss, we also
minimize the global loss of speaker style [12, 13].

5 Experiment

5.1 Corpus Dataset

In this study, we run our experiment on the Wall Street Journal CSR Corpus
[14]. The complete data are contained in an SI284 (SI84+SI200) dataset. We
follow the standard Kaldi [15] s5 recipe to split the training set, development
set, and test set. To reformulate the speech chain as a semi-supervised learning
method, we prepare SI84 and SI200 as paired and unpaired training sets, re-
spectively. SI84 consists of 7138 utterances (about 16 hours of speech) spoken
by 83 speakers, and SI200 consists of 30,180 utterances (about 66 hours) spoken
by 200 speakers (without any overlap with speakers of SI84). We use “dev93”
to denote the development and “eval92” for the test set.

5.2 Feature and Text Representation

All raw speech waveforms are represented at a 16-kHz sampling rate. We ex-
tracted two different sets of features. First, we applied pre-emphasis (0.97) on
the raw waveform, and then we extracted the log-linear spectrogram with 50-
ms window length, 12.5-ms step size, and 2048-point short-time Fourier trans-
form (STFT) with the Librosa package [16]. Second, we extracted the log Mel-
spectrogram with an 80 Mel-scale filterbank. For our TTS model, we used both
log-linear and log-Mel spectrogram for the first and second output. For our
ASR and DeepSpeaker model, we used the log-Mel spectrogram for the encoder
input.

The text utterances were tokenized as characters and mapped into a 33-
character set: 26 alphabetic letters (a-z), 3 punctuation marks (’.-), and 4 special
tags 〈noise〉, 〈spc〉,〈s〉, and 〈/s〉 as noise, space, start-of-sequence, and end-of-
sequence tokens, respectively. Both ASR input and TTS output shared the
same text representation.

5.3 Model Details

For the ASR model, we used a standard sequence-to-sequence model with an
attention module. On the encoder sides, the input log Mel-spectrogram features
were processed by 3 bidirectional LSTMs (Bi-LSTM) with 256 hidden units for
each LSTM (total 512 hidden units for Bi-LSTM). To reduce memory consump-
tion and processing time, we used hierarchical sub-sampling [17, 3] on all three
Bi-LSTM layers and thus reduced the sequence length by a factor of 8. On
the decoder sides, we projected the one-hot encoding from the previous charac-
ter into a 256-dims continuous vector with an embedding matrix, followed by
one unidirectional LSTM with 512 hidden units. For the attention module, we
used standard content-based attention [9]. In the decoding phase, the transcrip-
tion was generated by beam-search decoding (size=5), and we normalized the
log-likelihood score by dividing it with its own length to prevent the decoder
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Table 1: Character error rate (CER (%)) comparison between results of super-
vised learning and those of a semi-supervised learning method, evaluated on
test eval92 set

Model CER (%)

Supervised training:
WSJ train si84 (paired) → Baseline

Att Enc-Dec [19] 17.01
Att Enc-Dec [20] 17.68
Att Enc-Dec (ours) 17.35

Supervised training:
WSJ train si284 (paired) → Upperbound

Att Enc-Dec [19] 8.17
Att Enc-Dec [20] 7.69
Att Enc-Dec (ours) 7.12

Semi-supervised training:
WSJ train si84 (paired) + train si200 (unpaired)
Label propagation (greedy) 17.52
Label propagation (beam=5) 14.58
Proposed speech chain (Sec. 2) 9.86

from favoring the shorter transcriptions. We did not use any language model or
lexicon dictionary in this work.

For the TTS model, we used the proposed TTS explained in Sec. 4. The
hyperparameters for the basic structure were generally the same as those for
the original Tacotron, except we replaced ReLU with the LReLU function. For
the CBHG module, we used K = 8 filter banks instead of 16 to reduce the GPU
memory consumption. For the decoder sides, we deployed two LSTMs instead
of GRU with 256 hidden units. For each time-step, our model generated 4
consecutive frames to reduce the number of steps in the decoding process. For
the sub-loss hyperparameter in Eq. 5, we set γ1 = 1, γ2 = 1, γ3 = 0.25.

For the speaker recognition model, we used the DeepSpeaker model and
followed the original hyper-parameters in the previous paper. However, our
DeepSpeaker is only trained on the WSJ SI84 set with 83 unique speakers.
Thus, the model is expected to generalize effectively across all remaining unseen
speakers to assist the TTS and speech chain training. We used the Adam
optimizer with a learning rate of 5e−4 for the ASR and TTS models and 1e−3
for the DeepSpeaker model. All of our models in this paper are implemented
with PyTorch [18].

6 Experiment Result

Table 1 shows the ASR results from multiple scenarios evaluated on eval92. In
the first block, we trained our baseline model by using paired samples from the
SI84 set only, and we achieved 17.35% CER. In the second block, we trained
our model with paired data of the full WSJ SI284 data, and we achieved 7.12%
CER as our upper-bound performance. In the last block, we trained our model
with a semi-supervised learning approach using SI84 as paired data and SI200 as
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Table 2: L2-norm squared on log-Mel spectrogram to compare the super-
vised learning and those of a semi-supervised learning method, evaluated on
test eval92 set. Note: We did not include standard Tacotron (without SP-
KREC) into the table since it could not output various target speaker.

Model L2-norm2

Supervised training:
WSJ train si84 (paired) → Baseline

Proposed Tacotron (Sec. 4) (ours) 1.036

Supervised training:
WSJ train si284 (paired) → Upperbound

Proposed Tacotron (Sec. 4) (ours) 0.836

Semi-supervised training:
WSJ train si84 (paired) + train si200 (unpaired)

Proposed speech chain (Sec. 2 + Sec. 4) 0.886

unpaired data. For comparison with other models trained with semi-supervised
learning, we carried out a label-propagation [21] strategy to “generate” the
ground-truth for the unlabeled speech dataset, and the model with beam-size=5
successfully reduced the CER to 14.58%. Nevertheless, our proposed speech-
chain model could achieve a significant improvement over all baselines (paired
only and label-propagation) with 9.86% CER, close to the upper-bound results.

Table 2 shows the TTS results from multiple scenarios evaluated on eval92.
We calculate the difference with L2-norm squared between ground-truth and and
the predicted log-Mel spectrogram. We observed similar trends with the ASR
results, where the semi-supervised training with speech chain method improved
significantly over the baseline, and close to the upper-bound result.

7 Related Works

While single speaker TTS has achieved high-quality results [5, 22], speaker adap-
tation remained a challenging task for TTS system. As discussed in [23], adap-
tation techniques for neural networks fall into three classes: feature-space trans-
formation, auxiliary features augmentation, and model-based adaptation. Wu
et al. [24] performed a systematic speaker adaptation for DNN-based speech
synthesis at different levels. First, i-vector features [25] to represent speaker
identity was augmented at the input level. Then, they performed model adap-
tation using the learning hidden unit contributions at the middle level based on
the speaker dependent parameters [23]. Finally, feature space transformations
are applied at the output level. The parameters are transformed to mimic the
target speakers voice with joint density Gaussian mixture model (JD-GMM)
model [26].

Our adaptation approach might fall into a similar category with the aug-
mentation of auxiliary features such an i-vector. But, in this case, we utilize
DeepSpeaker [10] that is trained to minimize the distance between embedding
pairs from the same speaker and maximize the distance between pairs from dif-
ferent speakers. It has been proved to provide better performance on speaker
recognition task compare to i-vector. Furthermore, instead of focusing a speaker
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adaptation task only on TTS, we integrate all end-to-end models including ASR,
TTS, and DeepSpeaker into a machine speech chain loop.

8 Conclusion

In this paper, we introduce a new speech chain mechanism by integrating a
speaker recognition model inside the loop. By using the new proposed system,
we eliminate the downside from our previous speech chain, where we are unable
to incorporate the data from unseen speakers. We also extending the capability
of TTS to generate speech from unseen speaker by implementing the one-shot
speaker adaptation. Thus, the TTS can generate a speech with a similar voice
characteristic only with a one-shot speaker example. Inside the speech chain
loop, the ASR also get new data from the combination between a text sentence
and an arbitrary voice characteristic. Our results shows that after we deploy the
speech-chain loop, the ASR system got significant improvement compared to the
baseline (supervised training only) and other semi-supervised technique (label
propagation). Similar trends as ASR, the TTS system also got an improvement
compared to the baseline (supervised training only).
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